Identifying Solar Wind Charge Exchange in XMM-Newton Observations

Jenny Carter & Steve Sembay
University of Leicester

Aims of project

- Identify XMM-Newton observations that have experienced SWCX enhancement during their exposure
 - Identify key indicators of this effect
 - Prepare test parameters
 - Apply to a set of archived observations
 - Analyse results with respect to test parameters
- Look at application of test to whole archive and maybe create a tool for a user?

XMM-Newton and the Earth's magnetosheath

- 48 hour orbit
- Pointing angle will sometimes pass through areas of high X-ray flux
- Depends on pointing and time of year

Robertson & Cravens 2003

Expected SWCX geocoronal X-ray flux characteristics

Emission lines (e.g. Snowden et al., 2004)

CVI	0.37 keV
CVI	0.46 keV
OVII	0.56 keV
OVIII	0.65 keV
OVIII	0.81 keV
NelX	0.91 keV
MgXI	1.34 keV

- Short term variability
- Local source, expect pointing dependence

Observations

- XMM-Newton XSA archive
- Control subjects
 - Kuntz & Snowden, 2008, A&A, 478, v2
 - HDFN
 - Polaris Flare
 - Groth-Westfall strip
 - Snowden et al., 2004, HDFN
- Around 200 observations (total currently ~1500 revs, ~4300 observations (MOS full-frame))
- Look at ACE data for each observation

Data preparation and tests

ESAS and source removal

 ESAS software: analysis of diffuse emission, filtering, diagnostic plots

Point source removal (2XMM catalogue) and ghosting

Important for extra tests later on

Test

- Test for variability in SWCX band i.e. OVIII (500 – 700 eV)
- Compare to variability of continuum band
 (1100 1275 eV, 1600 1650 eV and 1900 2400 eV)
- Test for a lack of correlation between the count rates
- Test ok even for obs. with residual soft proton flaring
- Other tests:
 - check variance in each individual band compute in/out-FOV ratio (Fin_fout)

Top table — Carter & Sembay, A&A, 2008, subm.

Case	Observation	Date	Exp.	daf	reduced- χ_s^2	χ ² _E	FF	Err. FF	Comment
			(ks)		linfit ~ 5	~ĸ	ratio	ratio	
1	0093552701	2001-01-28	24.17	16	19.62	9.31	1.385	0.08	Weak case SWCX
2	0149630301	2003-09-16	19.77	16	16.03	12.65	1.035	0.07	Strong SWCX
3	0305920601	2005-06-23	15.24	14	13.14	19.79	1.025	0.07	Strong SWCX
4	0070340501	2001-06-18	19.10	8	11.85	15.91	1.628	0.13	Weak case SWCX
5	0150680101	2003-07-26	42.67	30	11.76	4.99	1.147	0.06	Strong SWCX
6	0101040301	2000-11-28	37.21	35	10.16	5.27	1.432	0.07	Weak case SWCX
7	0111550401	2001-06-01	93.37	83	8.88	6.74	1.100	0.04	Snowden et al. (2004)
8	0202370301	2005-01-08	25.85	14	5.74	1.50	1.174	0.05	Low χ_E^2
9	0159760301	2005-11-01	37.88	34	5.66	5.35	1.141	0.04	Bad flaring
10	0127921101	2000-07-23	7.43	6	5.59	5.14	1.180	0.12	Kuntz & Snowden (2007)
11	0127921001	2000-07-21	54.04	53	4.70	3.03	1.389	0.06	Kuntz & Snowden (2007)
12	0150480501	2002-12-22	21.93	11	4.45	1.29	1.356	0.10	Low χ_R^2
13	0136000101	2002-04-17	17.75	17	4.14	3.71	1.397	80.0	Strong case SWCX
14	0146390201	2003-03-29	25. 6 4	18	4.09	3.84	1.100	0.07	Bad flaring
15	0125920201	2000-06-05	23.45	22	4.01	1.00	1.305	0.01	Low χ_R^2
16	0164560701	2004-07-23	31.62	20	3.93	3.50	1.297	0.06	Weak case SWCX
17	0302310501	2005-10-23	23.16	23	3.82	0.64	2.114	0.10	Low χ_R^2
18	0089370501	2002-10-01	49.23	22	3.72	3.24	1.045	0.05	No SWCX
19	0101440101	2000-09-05	49.22	31	3.68	2.81	1.332	0.06	Weak case SWCX
20	0085150301	2001-10-21	31.96	24	3.65	2.21	1.671	0.09	Strong case SWCX
21	0202610801	2004-11-09	17.90	15	3.63	2.19	1.261	0.07	No SWCX
22	0106460101	2000-11-06	54.90	43	3.20	1.54	1.176	0.05	Weak case SWCX
23	0305560101	2005-10-21	23.01	22	3.16	1.62	1.093	0.05	No SWCX
24	0001930301	2001-12-28	24.58	18	3.00	2.08	1.925	0.10	No SWCX
25	0110661601	2002-03-19	7.61	6	2.79	1.47	1.603	0.14	Kuntz & Snowden (2007)

Results

- Control observations with SWCX found in/out top set
- ~11 observations with unpublished SWCX characteristics

Large χ^2 - SWCX obs.

Seduced on Feduced on Feduced valve

Ratio of variance in each band

Jennifer Carter April 2008 Local Bubble and Beyond II

General trends:

Conclusions

- Successful identification of control subjects
- Identification of new cases of geocoronal SWCX emission (~11)
- Some correlation with ACE
- Some correlation with XMM-Newton pointing angle
- Extreme case with many emission lines
- Plans to extend diagnostic and grading technique to entire archive at Leicester

Jennifer Carter April 2008 Local Bubble and Beyond II

Extra slides

Plan

- Geocoronal neutrals, SWCX and XMM-Newton
- Search for correlation, choice of test
- Observations used
- Results light curves
- Results spectra, redistributions of lines
- Results XMM-Newton position
- Conclusion and future

ESAS filtering, basis

- Main motivation for using ESAS: good for study of diffuse emission
- Filtering based on GTIs to remove obvious soft proton contamination
- Gives judge of residual soft proton contamination
- Background spectra created from filter wheel closed data for particle-induced background

Previous method

- Normalise lightcurves
- Calculate difference between lightcurves
- Calculate chi-squared distribution function
 - probability that a random variable will have a value greater than or equal to that for the given degrees of freedom providing that the distribution
- Grade with, grade = 1 p
 - Higher grade, more difference between lightcurves
- Problem: Too sensitive to differences. Formally to much variation between lightcurves when really the difference should not be significant. Residual soft protons needed to be accounted for – variability in the continuum band

XMM-Newton pointing restrictions

Certain pointing angles not permitted

Parameter	Value
Solar Avoidance Angle	70 - 110°
Earth Limb Avoidance Angle	42°
Moon Avoidance Angle	22°
Moon Avoidance Angle (during eclipses)	35°
Size of the visibility bins	2°x 2°
Minimum Altitude for Observation (km)	46000

Extra lightcurves

Snowden et al. HDFN, 2004

Solar wind characteristics

- Fast solar wind
 - coronal holes at high latitude (700 800 km/s)
 - where mag. field lines are open
- Slow solar wind
 - low latitutude (400 500 km/s)
 - enriched in Si, Mg, Fe c.f. fast wind
 - closed magnetic field lines, material in coronal loops
- Solar minimum: fast/slow wind situation as above
- Solar maximum: complicated situation, CMEs etc., lower charge states, similar hole temperatures although at lower latitude
- Mean free path of ions, v. hot, about 1AU, so no recombination

Khan and Cowley, magnetosheath distances

- Ann. Geophysocae 17, 1306-1335 (1999)
- They take from Roelof and Sibeck (1993), assuming Bz = 0
- Rmp = $12.6/p(nPA)^{(1/6)}$ = 111/(n(cm-3)*v(km s-1)) * Re
- Rbs = $17.6/ p(nPA)^{(1/6)}$ = 162/ (n(cm-3)*v(km s-1)) * Re

